Field Definition and 1000 Threads

  1. B

    Energy within an electric field

    I am trying to calculate the energy within an electric field that is generated between two plates by a pulse but am unsure of what voltage value to use. The pulse is a sinc wave. I am assuming I can still use the equation ## E= \frac{1}{2}CV^2 ##. I know the ##V_{rms}## and ##V_{max}## which...
  2. F

    Finding Electric field E due to an arc

    I need to account for tension, weight, and repulsion. For the tension, I can draw the x and y component of Tmax and see that the x components of the 2 tensions Tmax will cancel out, and there are 2 y components of the Tmax to factor in. Weight is just F = mg, where g is acceleration due to...
  3. A

    Electric Field Shielding: Does a Conductor Shield Inside?

    Hi. I was reading about conductors in electrostatic equilibrium and how it makes sense that they have zero electric field inside the material even when an external charge is brought near. The charge density of the material just rearranges itself to cancel. Then I searched for hollow conductors...
  4. C

    Can't solve an equation (Deflection of electrons in electrostatic field)

    Hello everyone! I've tried everything but the equation (3) in "Deflection of electrons in electrostatic field" is impossible. Can someone at least hint me to a a way the composed it ?
  5. Kaguro

    Concept of electric field and hollow conductors

    I think: Due to charge q, there will be a field in region 1, very much dependent on position of q. The inner surface charge density of irregular conductor is also dependent on the position( so that it could cancel the field of charge and E=0 inside body of irregular conductor). The outer...
  6. M

    Electric field of non-conducting cylinder

    a) I have calculated (1) λ = ρA = ρπr^2 = 2.49 * 10^-10 C/m and placed it into (2) yielding E = λ / (2πεx^2) = 106.73 N/C. This doesn't seem to be correct by the feedback, however. b) Here just to consider the proportion of the cylinder mass constrained by y.
  7. K

    I Pushforward/Pullback of Vector Field

    I am looking at the following document. In section 2.3 they have the formula for the pushforward: f*(X) := Tf o X o f-1 I am having trouble trying to reconcile this with the more familiar equation: f*(X)(g ) = X(g o f) Any help would be appreciated.
  8. zonde

    I Interpretation of Potential Energy as Field Property

    I will quote this statement from another thread: In that thread number of other posters seemed to agree with this statement. So I tried to analyze it a bit. For the sake of my questions let's say we limit GR to Schwarzschild spacetime and if there are problems with gravitational potential...
  9. A

    A charged conducting ring rotating B field -- referece frames

    Admittedly I found similar threads here already but due to my rather lacking math skills I wanted to go through this myself. As for the math side, I see various different equations with which this is treated can someone please provide the formulas for calculating B field from a rotating charged...
  10. sep1231

    Electric Field as potential gradient

    I know that the electric field is directed from Q to P, but I'm not sure which magnitud is greater, I tried this
  11. B

    Using Faraday's Law to calculate the magnetic field

    I got stuck near the beginning, so I tried working backwards. Starting from B = (k X E0)/ω * cos(k⋅r - ωt +φ) I found -∂B/∂t = -k X E0 sin(k⋅r - ωt +φ) So now I need to find ∇ X (E0 cos(k⋅r - ωt +φ)) and see that it is equal to the above result. This is where I'm stuck though, I'm not sure...
  12. greg_rack

    Induced current in a coil from a constant uniform magnetic field?

    Assume a solenoid coil(made up of ##N## windings) placed in the horizontal(##\hat{y}##) direction and in a constant uniform magnetic field. Would an induced current run through the(closed) coil if it spins around its central horizontal ##\hat{y}## axis? My guess is "no", since such a current is...
  13. F

    I Can we quantize a static EM field?

    Can we have a quantization static EM field?If not, how can we interpret static EM field in stand point of QM?
  14. E

    I Classical equivalent of scalar free field in QFT

    Hi there, In QFT, a free scalar field can be represented by the lagrangian density $$\mathcal{L} = \frac{1}{2}\left(\partial\phi\right)^2 - \frac{1}{2}m^2\phi^2$$ I would like to find a classical system that has the same lagrangian. If we consider the transversal motion of an elastic string...
  15. F

    Lagrangian for the electromagnetic field coupled to a scalar field

    It is the first time that I am faced with a complex field, I would not want to be wrong about how to solve this type of problem. Usually to solve the equations of motion I apply the Euler Lagrange equations. $$\partial_\mu\frac{\partial L}{\partial \phi/_\mu}-\frac{\partial L}{\partial \phi}=0$$...
  16. AndreasC

    Non-interacting gas in homogeneous gravitational field

    It even gives a hint, it says "consider two horizontal surfaces z1 and z2 and think about what thermodynamic equilibrium means for particles traveling from one surface to the other". This really trips me up because I am not sure what to do with this. Obviously in equilibrium the number of...
  17. fluidistic

    Permanent magnet's magnetic field calculation

    Hello people, in a near future I'd like to calculate (numerically, with finite elements) the magnetic field of several permanent magnets of various shapes. I am wondering which equation(s) I should solve, exactly. It's been a long time I dived into an EM textbook and I don't have one in hand...
  18. F

    I What is difference between EM wave and EM field?

    They say wave function is different to quantum field. Then what is the difference between EM wave and EM field?(By the way :Is that EM wave the wave function of photons?).It seem to me EM wave is the wave of EM field?
  19. E

    Waveform produced by a collapsing magnetic field

    A thought experiment: A electron is moving in a straight line at velocity v. It instantly stops dead. It doesn't move another femtometer. Obviously its magnetic field collapses and produces light. What is the waveform of the light produced? Is it something like this...
  20. J

    Other How much does one's undergraduate field of research matter?

    I am currently an undergraduate sophomore at a US university that is very reputable for physics. I am majoring in physics, and would like to one day attend grad school, so I tried to start research early and was able to find a research position this fall semester. I emailed a couple of theory...
  21. TechieDork

    Find an expression for a magnetic field from a given electric field

    Here this is my attempt : Reference Textbook : Zangwill's Modern Electrodynamics I stuck at the last step , I really have no idea what to do next.
  22. sergiokapone

    Law of motion for orbiting particle in a uniform magnetic field.

    Hi all, I interested in how can I get low of motion in for orbiting particle in a uniform magnetic field $$\frac{d\vec{r}}{dt} = \vec{\omega}\times\vec{r},\qquad \vec{\omega} = \frac{e\vec{B}}{mc},$$ Of course, rotating about z' axis is very simple. \begin{equation}\label{eq:K}...
  23. Y

    How does the saturation flux density affect magnetic field strength?

    So I'm confused what the Saturation Flux Density is referring to. Defintion says it is when you no longer get an increase in H-field when increasing external B-field. So, does the satuation flux mean the core can only create fields UP TO that saturation flux, or that it can make a stronger...
  24. Dale

    I Number of photons in an arbitrary EM field

    Correct me if I am wrong. I understand that if ##\vec E## and ##\vec B## are solutions to Maxwell’s equations then ##\Psi= \vec E + i \vec B## is a solution to Schrodinger’s equation. Is there an easy way to calculate the statistical distribution of the number of photons, or at least the...
  25. D

    How do I generate a magnetic vector field using equations?

    I am considering using a pair of point charges: positive and negative electric charge to model a magnetic dipole's magnetic field by just average the electric field vectors between the two charged particles where they overlap. Will that work? In this case the + field will be vectors pointing...
  26. Philip Koeck

    The magnetic field just above a lens in an electron microscope

    I'm looking for an estimation or simulation of the magnetic field in the horizontal plane just above a typical lens in a transmission electron microscope. A rough cross section of such a lens can be seen here: electron lens - Bing images . The lens is cylindrically symmetric around the vertical...
  27. A

    Electric Field from Non-Uniformly Polarized Sphere

    Solving for the volume and surface bound charge densities was easy using equations 1) and 2). The polarization only has an r component so ##ρ_b=-\frac 1 {r^2} \frac {d} {dr} (r^2 \vec P)=-α(n+2)r^{n-1}##, and ##\hat n=\hat r## so ##σ_b=αa^n##. To find ##\vec E## I intend to use equation 3)...
  28. E

    What is the Constant of Motion in a Rotating Potential Field?

    I'm getting a bit stuck here, the Lagrangian and equation of motion is$$\mathcal{L} = \frac{1}{2} m \dot{\mathbf{x}}^2 - V_0(R^{-\omega t} \mathbf{x}) \implies m\ddot{\mathbf{x}} = -\nabla_{\mathbf{x}} V_0(R^{-\omega t}\mathbf{x})$$as expected. To try and verify that the quantity ##E - \omega...
  29. waazwag

    Induced voltage difference in a magnetic field

    Hi everyone, I'm currently working on the problem listed above. I'm pretty new to electrodynamics, and I'm learning on my own through a book. I was wondering if someone can please help me through this problem. Here are my thoughts:I think I need to use Faraday's Law of Induction for part (a)...
  30. PhysicsTest

    To find the parameters of velocity in an electric field

    i have drawn the E field as below, hence the F will be in the upward direction for electron a. Using energy is constant, the velocity ##v_x## as it crosses A is ##0.5mv_x^2 = q*V_a## ##v_x = \sqrt{(\frac{2qV_a} m)} m/s## one doubt i have here is, the question mentions electrons, but i have...
  31. E

    Energy current for field satisfying KG equation

    First to compute the time derivative of ##\mathcal{E}##,$$\mathcal{E}_t= \phi_t \phi_{tt} + c^2 (\nabla \phi_t) \cdot (\nabla \phi) + m^2 c^4 \phi \phi_t = \phi_t \left[ \phi_{tt} m^2 c^4 + \phi \right] + c^2 (\nabla \phi_t) \cdot (\nabla \phi)$$Then we switch out ##\phi_{tt} + m^2 c^4 \phi##...
  32. badluckmath

    Electric Field of two line charges

    I'm trying to solve this, but i don't really know how to start this problem. There are two line charges and i must find the E. Field on the center.
  33. J

    What effects does an electric field have on potential energy?

    Like an electric field is applying a sort of force on a particle. I was wondering if this at all impacts the potential energy of a particle. For instance, when the force of gravity does work on an object, its potential energy changes as a consequence. Would it be the same thing here?
  34. A

    B field around a wire, single wire electromagnet

    A quick description. A single straight wire and a second straight wire, both wires are electrically as well as physically separated, the physical separation distance assume is very small in order for the B field experienced by the second wire to be sufficiently strong. In all cases one of the...
  35. E

    What is the relationship between force lines and the stress tensor field?

    Force lines method is used in Solid Mechanics for visualization of internal forces in a deformed body. A force line represents graphically the internal force acting within a body across imaginary internal surfaces. The force lines show the maximal internal forces and their directions. But...
  36. D

    A The g_ij as potentials for the gravitational field

    The equation of motion for a particle in a gravitational field is ai = -Γijk vj vk In inertial coordinates the Lorentz force is mai = qFij vk So it seems like F corresponds to Γ. Just like F is expressed in terms of the derivatives of A, the christoffel symbols are expressed in terms of...
  37. Andrei0408

    Magnetic field of the planar wave

    I understand that because the vectors are perp, k x i = j, but why is k x j = -i? Why the minus? Could you please explain?
  38. A

    I Quantum Foundations: outlook on this research field?

    Recently, it has come to my attention a field called Quantum Foundations. This is exactly what brought me into Physics, even though back then I didn't know it was a research area. In my Physics classes, I got disappointed and unmotivated at the "Shut up and calculate!" attitude of my Physics...
  39. H

    I Magnetic Field Generated By Moving Charged Objects - Confusion Explained

    Suppose there is a charged line and near that line, there is a magnetic needle lying in the vertical plane of the line. The magnetic needle is radially placed. If the charged line and the magnetic needle are moving at a same constant velocity(parallel to the line, v<<c) towards an observer. I...
  40. J

    Field of a "pancake" coil in QI charger

    Attached is a photo the the primary transformer coil of a QI (I believe pronounced CHEE) wireless charger, as used for charging a cell phone. I know the fields of solenoids but what would be the magnetic field structure of this. By-the-way, a similar coil was used on old AM radio sets.
  41. entropy1

    B Is a photon an excitation of the electromagnetic field?

    Allow me to hijack this thread for a second: a photon is an excitation of the electromagnetic field, right? The photon does not exist until measured. So how can we send a photon in a particular direction, so it has a known position and momentum?
  42. S

    Line Integral to Verify the Magnetic Field B

    Hello folks, I'm working on a question as follows: I appreciate that there might be more sophisticated ways to do things, but I just want to check that my approach to the line integral is accurate. I will just give my working for the first side of the path. So I have set up the path as a...
  43. PhysicsTest

    Find the electric field from charge density

    There is a section in the BJT explanation the charge density and the corresponding electric field graphs. But i was not sure how the electric field is derived and hence i started deriving it. Please correct me if my understanding is wrong in posting the question It is an ##npn## BJT. My...
  44. B

    Understanding the electric field of a sphere with a hole

    Here's an image. O and O' are the respective centers, a is the distance between them, r is the distance from the center of the sphere to P, and r' = r - a, the distance from O' to P. The approach (which I don't understnad) given is to use Gauss' Law and superposition, so that we calculate the...
  45. DuckAmuck

    I Einstein Field Eqns: East/West Coast Metrics

    My questions is: Depending on which metric you choose "east coast" or "west coast", do you have to also mind the sign on the cosmological constant in the Einstein field equations? R_{\mu\nu} - \frac{1}{2} R g_{\mu\nu} \pm \Lambda g_{\mu\nu} = \frac{8\pi G}{c^4} T_{\mu\nu} For example, if you...
  46. greg_rack

    Period of a metal rod oscillating in a magnetic field

    This problem honestly got me in big confusion. I managed to find the angle ##\theta## at which the rod rests by equalling the components of weight and Lorentz's force... but from this point on I really don't know how to manage the harmonic oscillation part.
  47. steve1763

    A Exploring Free and Interaction Terms of L in Quantum Field Theory

    With free part L=-½(∂Φ)^2 -½m^2 Φ^2 and interaction term L=½gΦ^2Any help would be appreciated, thank you.
  48. greg_rack

    The electric field between two adjacent uniformly charged hemispheres

    here is the situation Hi guys, I should illustrate the motion of an electron in both cases, but I cannot really understand how will the field be like in the gap between the two(filled) hemispheres(conductor and non). Another thing is: for the conductive hemispheres, does it make any sense to...
Back
Top