I'm wondering is whether it is the gravitational potential (in J/kg) at a point in space that determines the rate of passage of time, or whether it is the gravitational field strength (in m/s2).
To clarify, suppose you had a very heavy hollow spherical shell. The gravitational potential would...
Since q3=q4 and they are opposite to each others they cancel out
But as soon as I try to find the electric field of one of the charges, I need the radius which is not given.
By isolating the electric field for radius
E=(kq)/r^2
I now have two unknowns
The electric field inside a charged spherical shell moving inertially is, per Gauss's law, zero.
If the spherical shell is accelerated, the field inside is not zero anymore, but it gains a non-null component along the direction of the acceleration, as mentioned, for example, in this paper.
The...
hello i would like to understand to something.
here is the drew
now for my question:
i was able to find Ey and here is my correct answer:
when i try to find Ex i didnt understand something, i found the correct answer but i need to put minus before and i want to know why?
here is my solution...
Hi,
I have a fairly simple question, but the answer is probably not as simple.
I'm not sure to understand why in a guided wave (TE), the electric field is in the y direction.
I know ##E_z = 0##, but why ##E_x = 0, B_y = 0##?
Hi!
So my question is this, I have done measurements with an magnetic field meter around a transformer from 0.5 meter away (then measure some points around) and then I moved out 0.5 meters and so on until I reached a nearby building.
So my issue now is I want to visualize this to my customer...
I know that each material is made up of tiny magnets due to electrons orbiting the nucleus and also from electron spinning about its own axis. In ferromagnetic or paramagnetic rod these tiny magnets align with the applied field causing the net field in the rod to increase. But for diamagnetic...
For example, through the diffracting of electrons and their wave-particle dualistic nature, its possible to produce an interference pattern.
And for the resulting electron beam, it will still be affected by the Lorentz force and be deflected by it. At the same time, the position(s) of the...
If a bosonic field is probabalistic, and if it can be emitted (suddenly coming into existence), what determines its probability distribution when it is emitted from a fermion? In other words, one thinks (or at least I think) of a fermion field as already being in existence and already having...
Dear PF,
I have a question regarding a conductor in electric filed. I have formulated my question in attached PDF file ... would please be so kind and advise me please...
Thanks you in advance ...
Obviously at point charges, but where along boundaries? Would they theoretically occur in superconductors since they can carry infinite current (J -> infinity)?
I'm reading《Introducing Einstein's Relativity_ A Deeper Understanding Ed 2》on page 180,it says:
since we are interested in the Newtonian limit,we restrict our attention to the spatial part of the geodesic equation,i.e.when a=##\alpha####\quad ##,and we obtain,by using...
I was thinking about an idea of a calendar epoch based on the field of physics, and its thinking about which event should be used as the epoch
so I have this idea and just wondering what you guys might think about it
I initially landed upon two ideas, one pretty ancient and the other kinda...
It is "easy" to produce experimental setups that could and should for all practical purposes be described as having a constant background magnetic field everywhere, especially in the "asymptotic region" where the detectors are located.
You can do this both in vacuum, and inside a solid sample...
For the first calculation of the velocity of the gas I use the first equation and this converted in meter would be look like this (first value as an example)
v=299792458 m/s * (6.76813x10^-7-6.768x10^-7)/6.768x10^-7 =5836.03m/s or 0.0019c
this was the velocity of the gas for the first spectral...
I am unsure of my solutions and am looking for some guidance. a.)The real part of the wave in complex notation can be written as ##\widetilde{A} = A^{i\delta}##. Writing the Complex Wave equation, we have ##\vec E(t) = \widetilde{A}e^{(-kz-\Omega t)} \hat x##. Therefore the real part is ##\vec...
I was thinking of using the chain rule with
dF/dx = 0i + (3xsin(3x) - cos(3x))j
and
dF/dy = 0i + 0j
but dF/dy is still a vector so how can it be inverted to get dy/dF ?
what are the other methods to calculate this?
Bubbles of air were rising in some water in a rice field. The bubbles would float around at random for a while. If two bubbles got within a certain distance of one another they would very quickly merge. It looked like a predatory larger bubble pouncing on the smaller prey. Gotcha! Why is...
Let us consider relativistic particle (electron) which moves with relativistic speed ##v## in the Coulomb field (in the field of a fixed heavy nucleus). The main question is what is the potential energy of a particle in such a static field? Landau and Lifshitz in their book "Field Theory"...
"One way to ground everything in reality is to think purely about the records of experiments that are stored in computer memory. Very often, that's a list of times at which events happened."
-- Peter Morgan, old thread meaning-of-wave-function-collapse
"If we are to understand the relationship...
If there are two charges positive and negative and their electric field point in the same direction then the total electric field would be their sum of magnitudes. Why don't we consider the sign of the charges? For example, a parallel plate capacitor is inside the region where both the positive...
How does relativistic qft predict quantum fluctuations in the vacuum? We see this in the experiment proving the Casimir Effect so we know it's physical, but why?
Here is my attempt (Note:
## \left| \int_{C} f \left( z \right) \, dz \right| \leq \left| \int_C udx -vdy +ivdx +iudy \right|##
##= \left| \int_{C} \left( u+iv, -v +iu \right) \cdot \left(dx, dy \right) \right| ##
Here I am going to surround the above expression with another set of...
In a paper by Bain (2011), particles are left with little ontological value because of the Reeh-Schlieder theorem, the Unruh effect and Haag's theorem. The author claims (and here I am copying his conclusion):
First, the existence of local number operators requires the absolute temporal metric...
I tried gauss law.
And the fact that if alpha is less than pi/2 we can say that we have two parts with angle alpha and one other part which has a normal field at the center.
But non of them helped me answer.
The problem's solution says that we can use the fact that our section has longitudinal...
Why the area of the thin rings are ##2πasin\theta \, ds##? (a is the radius of the hollow sphere)
If we look from a little bit different way, the ring can be viewed as a thin trapezoid that has the same base length ( ##2πa sin\theta##), and the legs are ## ds##.
The angle between the leg and...
Gravity isn't a force in the strictest sense of the word, yet magnetism is exactly that: a force. As is strong, EW, etc.
Therefore, it's possible that the more massive magnetic object gets drawn to the center of a magnetic source at a faster rate than the less massive magnetic object. Discuss!
A piece of metal moving West to East in a North to South fixed magnetic field slows down...but how? Yes of course eddy currents are set up in the metal and these currents generate their own magnetic field which somehow slows down the moving metal piece...but how does this actually slow the...
Sorry if I post again about this topic (last time I promise!) but I still have some doubts regarding the concept of flux. This collection of problems I have quite standard but there are so many variations. Here is the circuit in question:
Something tells me that I could write a function that...
Statement: The magnetic field around a straight wire carrying a current can be explained Relativistically by changing the inertial frame of reference to the frame of the moving electrons - i.e., a Lorentz contraction of the positive charges in the wire will give a denser concentration of the...
The amplitude of ##\vec{B}## is given by:
$$B(x) = B_{0} - B_{0} \frac{x}{2l}$$ for ##0 \leq 0 \leq 2l##
This was my attempts at finding the flux of B:
$$\Phi(B) = (B_{0} - B_{0} \frac{x}{2l})(2l-x(t))l = B_{0}2l^2-2B_{0}x(t)l+ B_{0}\frac{x(t)^2}{2}$$
and the current: $$ i = -\frac{d...
$$B(t) = B_{0} \frac{t^2}{T^2}$$
for ##0 \leq t \leq T##
The issue here is more conceptual, because once I find the flux of B I know how to proceed to find the current. I got velocity (but it seems to me that it is the initial velocity), I could use it to find the time in function of space...
Faraday's law tell's you about the line intergal of the electric field, but you have to know the direction of the induced electric field first in order to properly apply it. How can I find its direction? Is it in the same direction as the induced current?
What is it the we detect in the first instance?
Is it the particle |wave or is it the field?
Is the former more fundamental than the latter in any sense or are we just talking the opposite sides of the same coin?
For instance does the em field create the photon and the electron or could...
Hi all. I am stuck with a seemingly silly doubt all of a sudden.
The direction of Electric Field is taken from Positive to Negative (because Field Lines originate from a Positive Charge and terminate at Negative Charge).
We know that direction of Dipole Moment is from Negative Charge to a...
A standard textbook problem features a constant B field and a conducting loop that increases in area at constant rate.
It is easy to work out the induced EMF and the associated electric field magnitude and direction (CW or CCW). The magnitude of the E field
is E = B v where v is a velocity...
This question appeared in a university entrance exam.Basically, if magnetic flux passing through a surface of a loop changes over time ,only then e.m.f will be induced to that loop.But here only a straight line is used and there's no chance of forming any area.So by definition there's no chance...
Hi all experts!
I would like to read about the Lagrangian of a classical (non-quantum), real, scalar, relativistic field and how it is derived. What is the best book for that purpose?Sten Edebäck
So, I am able to calculate the electric potential in another way but I know that this way is supposed to work as well, but I don't get the correct result.
I calculated the electric field at P in the previous exercise and its absolute value is $$ E = \frac {k Q} {D^2-0.25*l^2} $$ This is...
Hi,
I am reading Robert D Klauber's book "Student Friendly Quantum Field Theory" volume 1 "Basic...". On page 48, bottom line, there is a formula for the classical Lagrangian density for a free (no forces), real, scalar, relativistic field, see the attached file.
I like to understand formulas...
I have read in the following article the expression "high breakthrough field": https://link.springer.com/article/10.1557/PROC-871-I9.6
I tried to find out in the internet what is the definition of that and what it refers to in the transistors but I couldn't find anything!
Thank you in advance!
I know that for a single cylindrical neodymium magnet, the formula
$$ \displaystyle{\displaylines{B(z)=\frac{μ_0M}{2}(\frac{z}{\sqrt{z^{2}+R^{2}}}-\frac{z-L}{\sqrt{(z-L)^{2}-R^{2}}})}} $$ shows the relationship between the magnetic field strength and the distance between the magnet. I was...
Hi. I believe I have what may be both a silly and or a weird query. In many Griffiths Problems based on Electric Field I have seen that a coordinate system other than Cartesian is being used; then using Cartesian the symmetry of the problem is worked out to deduce that the field is in (say) z...
d(ɣmv)/dt = qvB
(dɣ/dt)mv + ɣm(dv/dt) = qvB
Substituting gamma in and using the chain rule, it ends up simplifying to the following:
ɣ^3*m(dv/dt) = qvB
Now, I am confused on how to solve for v.
Hello everyone,
This is in reference to fig 5.19 (screen shot attached - please read the paragraph which says "Figure 5.19 shows the...").
I don't get why the field outside of the sphere of radius ct acts as though the particle would have continued its motion. Author's words : "The field...
If we have an electromagnetic wave like the one in the picture and a molecule which is, in the image, the small black ball with electron cloud being the part with "minus sign" in it, does the molecule with its cloud start to oscillate, once the EM wave hits it, as an induced electric dipole...