Field Definition and 1000 Threads

  1. H

    I Gravitational Field Existence in Void: Philosophical Inquiry

    This is of a more philosophical inquiry. If two particles are in a void and moving apart, if they are sufficiently far apart, like say the distance between two galaxy cluster walls, does the gravitational field between them still fundamentally exist? I'm trying to understand if gravity will...
  2. huangdaiyu

    A Steady state confined flow field: Is it cyclic?

    For a fluid that is confined to a finite region with no sources and sinks, are the only options for the flow field a) static, and b) cyclic? The example I have in mind is Rayleigh convection in a shallow dish heated from below, where convection cells are formed beyond a certain temperature...
  3. A

    A Schrodinger equation in quantum field theory

    What is the Schrodinger equation in QFT? is it the nonrelativistic approximation of a Klein-Gordon scalar field? or Is there more? I have read that the Schrodinger equation describes a QFT in 0 dimensions. I accept every answer
  4. S

    I Noether currents for a complex scalar field and a Fermion field

    For a complex scalar field, the lagrangian density and the associated conserved current are given by: $$ \mathcal{L} = \partial^\mu \psi^\dagger \partial_\mu \psi -m^2 \psi^\dagger \psi $$ $$J^{\mu} = i \left[ (\partial^\mu \psi^\dagger ) \psi - (\partial^\mu \psi ) \psi^\dagger \right] $$...
  5. Grizzly_1

    B Confusing diagram of a rotating coil in a magnetic field

    Hello all, I am currently studying for a physics a-level qualification in the UK, I use the AQA specification and I am having trouble understanding this image representing a scenario I found in my textbook. The first image in the three part diagram shows this rotating coil and to me, it makes...
  6. Idontknowhatimdoing

    Electric Field Inside Cylindrical Capacitor

    we know that flux is equal to the area integral of electric field dotted with dA and we can set this equal to charge enclosed divided by epsilon naught. Thus, in this case, the integral simplifies to E * A = (q_enclosed)/(ε_naught) when we choose a cylindrical gaussian surface with radius of r...
  7. A

    B Magnetic field coil ferrous material for loudspeaker

    Hi everyone. there are materials called soft magnetic and they are halfway between a permanent magnet and a ferromagnetic material. I would like to try to make a field coil loudspeaker where the maximum amount of flux-density is very important but also the amount of current it takes to create...
  8. J

    Thin heartshaped wire - Calculate the magnetic field at the origin

    Hi, So I know I am to use Biot Savarts law dB= (my_0/4pi)* (I dl x (r-r')/|r-r'|^3 where r=0 because its in origo and r'=r'_c(r'_hat). This makes (r-r')= -r'_c(r'_hat) and |r-r'|^3= r_c^3. From previous questions, I have defined dl' as the infinitesimal displacement of r'(phi) when phi' is...
  9. J

    Struggling With Part C of Electric Field Calculation

    I've figured out parts A and B but I'm struggling with Part C. I used the equation V = kQ1/r1 + kQ2/r2 where Q1 = -4.4e-12C ; k = 8.98755e9 r1 = 0.026 m Q2 = 27.4e-12 and r2 = .051-.026 My answer (8.329 V) is wrong but I have no idea why. Please help if you can.
  10. V

    Why is electric field at the center of a charged disk not zero?

    The electric field strength at the center of a uniformly charged disk should be zero according to symmetry of concentric rings about the center, where each ring is contributing to the electric field at the center of the disk. For a thin ring of uniform charge distribution the formula is ##E =...
  11. O

    Motional EMF in the presence of a time-varying magnetic field

    My question arises from the following problem: We have a uniform magnetic field into the page, decreasing at a constant rate dB/dt< 0, causing the bar to move to the right. Find the velocity of the bar as a function of the time, and in terms of the known parameters: the resistor R and the...
  12. Pushoam

    Electric field at a point close to the centre of a conducting plate

    Since the electric field due to a conducting plate is twice the electric field due to a plastic plate having same charge density, the electric field at the point P will be twice in case of conducting plate and hence it is 20 volt per metre. Is that correct?
  13. A

    Relationship between magnetic field lines and magnetic field

    As stated in the problem, I want to demonstrate mathematically that field line density is directly related to the magnitude of B. How would I be able to do this, other than simply using the flux equation and showing that for a higher flux in the same area, the magnetic field must be rise...
  14. kuruman

    Finding a Parametric Solution for Particle Trajectory in Magnetic Field

    This is a solution to a problem inspired by another thread. It is posted here to separate it from the multiple choice question which was the subject of that thread. A parametric solution for the trajectory can be found quite easily if the motion is modeled as a particle with charge ##q##...
  15. B

    A Energy levels shifts in a time-varying electric field

    Hello! I have 2 levels of the same parity with energies ##E_1 < E_2##, and another level of opposite parity a distance ##E## from the ##E_2##. I also have that ##E_2 - E_1 << E##. I have a laser on resonance (I am trying to scan along the resonance and find it) with the transition from ##E_2##...
  16. M

    A Maxwell theory invariant under dual field strength tensor application

    Hello everybody! I know in classical field theory adding in the Lagrangian density a term of the form Fαβ (*F)αβ (where by * we denote the dual of the field strength tensor) does not change the EOM, since this corresponds to adding a total derivative term to the action. However when computing...
  17. N

    Proving SHM for charged spring mass system in electric field

    For part (f) Solution is I don't understand why the bit highlighted in yellow is true. Would anybody be kind enough to help.
  18. M

    Electric field at surface of lead-208 nucleus

    For this problem, The solution is, However why is ## r = (208)^{1/3}(1.20 \times 10^{-15} m)## Many thanks!
  19. M

    Integrating electric field of rod

    For this problem, However, I am trying to solve this problem using an alternative method compared with the solutions. My method is: ##\vec E = k_e \int \frac {dq} {r^2} \, dx ## ##\hat r## ##\vec E = k_e \int \frac {\lambda} {x^2 + d^2} \, dx## ## \hat r## If I let ## \hat r = \frac {-x\hat i...
  20. M

    I Electric field in a rotating frame

    Hello! I have a radially pointing electric field i.e. at a given radius, R, the electric field has the same magnitude and points radially around that circle of radius R. I have a particle moving around that circle of radius R, with uniform velocity (ignore for now how it gets to move like that)...
  21. M

    Magnetic Field Due to a Curved Wire Segment

    For this problem, The solution is, However, why did they not use limits of integration for the integral in red? When I solved this, I used as limits of integration. I see that is not necessary since you get the same answer either way, but is there a deeper reason? Many thanks!
  22. M

    Magnetic Field Surrounding a Straight Conductor

    For this problem, Part of the solution is, However, would someone please tell me where they got the sine function circled in red from? Many thanks!
  23. M

    Electric field due to n charges

    For this problem, The solution is, However, should they be a vertical component of the electric field for the expression circled in red? I do understand that assuming that when the nth charge is added it is placed equal distant for the other charges so that a component of the electric field...
  24. M

    Electric field due to two charges

    The problem and solution is, However, I would like to know why it cannot be solved like this: Thanks for any help!
  25. noowutah

    Find the electric field of a long line charge at a radial distance

    TL;DR Summary: Find the electric field of a long line charge at a radial distance where the potential is 24V higher than at a radial distance r_1=3m where E=4V/m. Answer: 29.5V/m. Never mind: I retract this question. The integral apparently is supposed to diverge! I apologize for not reading...
  26. M

    Symmetry behind charged spring-mass system in Electric field

    For this problem, If we assume that x = 0 is where the spring connects to the wall, then the rest position of the mass-spring-electric field position is x = EQ/k and the max position is x = 2EQ/k. Is there a reason for the symmetry between the rest position and max position? (The symmetry...
  27. M

    Alternative method of finding Electric flux from non-uniform field

    For this problem, The solution is, However, why can the differential area not be: I tried integrating and got, Can someone please tell me what I have done wrong? Thank you!
  28. Kostik

    A Static Gravitational Field: Why Must ##g_{m0} = 0##?

    In Dirac's "General Theory of Relativity", he begins Chap 16, with "Let us consider a static gravitational field and refer it to a static coordinate system. The ##g_{\mu\nu}## are then constant in time, ##g_{\mu\nu,0}=0##. Further, we must have ##g_{m0} = 0, (m=1,2,3)##." It's obvious that...
  29. L

    B Quantum field theory and wave particle duality

    I recently watched this lecture "Quantum Fields: The Real Building Blocks of the Universe" by David Tong where the professor provides a succinct explanation of QFT in about 6 minutes around the midway mark. The main point being that there are fields for particles and fields for forces and the...
  30. J

    Calculating Area & Direction of Magnetic Field

    Hi, the problem statement is above. I have some questions about how to calculate the area and the direction of the magnetic field of this problem. As the magnetic flux, my professor have defined it as Phi= integral(B dS)=(Area)e_x B= (Area_triangle + (L^2/2) *(β + α(t)))*B e_z. How can one know...
  31. J

    Derive an expression for the radial charge distribution of an E field

    I know we're supposed to attempt a solution but I'm honestly super confused here. I think the second an third terms of the del equation can be cancelled out because there is only an E field in the r hat direction, so no e field in the theta and phi directions. That leaves us with ##\nabla \cdot...
  32. Flannel

    Force Field Experiments: Realistic Physics Questions

    Hello everyone! Events in my current webnovel have reached the limit of confidence in my physics reasoning, so I'm here to ask for confirmation of my estimates of what would happen from experimentation with force fields. While the setting is fantasy/magic based rather than superscience, I still...
  33. sal1854

    I Direction of motion of particles with total spin under magnetic field

    According to Chapter 8 of Griffiths' book Introduction to Electrodynamics, the magnetization force that acts on a magnetic dipole is $$F_M=\nabla (m \cdot B)$$, where ##m## is the magnetic moment and ##B## is the magnetic field. For a paramagnetic or diamagnetic particle...
  34. T

    I Origin of the Earth's magnetic field

    How can the motion of liquid iron consisting of neutral iron atoms in the earth's core create magnetic fields? What am I missing?
  35. Ahmad Sadek

    B Can a rocket flame be controlled by a magnetic field?

    An idea came to my mind after I saw the plasma reactor and how the plasma floats through a magnetic cage that prevents the nuclear reactor from melting, to make a magnetic cage that prevents the rocket engines from melting while they are working. Is this possible, or does it take a critical...
  36. G

    I Magnetic Field vs Spacetime: Effects on Inertia Disk

    By following article a magnetic field can produce a least a minimum distortion in spacetime. If we have a inertia disk spinning 50% inside of a strong closed magnetic field may we suppose that we will create an unbalanced in the angular disc moment producing a propulsion without mass variation...
  37. Addez123

    Can't find potential of vector field

    1. To find the solution simply integrate the e_r section by dr. $$\nabla g = A$$ $$g = \int 3r^2sin v dr = r^3sinv + f(v)$$ Then integrate the e_v section similarly: $$g = \int r^3cosv dv = r^3sinv + f(r)$$ From these we can see that ##g = r^3sinv + C## But the answer is apparently that there...
  38. M

    No Limits of Integration for Electric Field Integral?

    For this problem, The solution is, However, why have they not included limits of integration? I think this is because all the small charge elements dq across the ring add up to Q. However, how would you solve this problem with limits of integration? Many thanks!
  39. M

    Finding Area of Ring Segment to Find Electric Field of Disk

    Hi! For this problem, Why is the area of each ring segment dA equal to (2π)(r)(dr)? However, according to google the area of a ring segment (Annulus) is, Many thanks!
  40. arivero

    I Is Connes' Model of the Higgs Field a Wormhole?

    As this week the great topic is the Einstein-Rosen bridge and duals of it, I wonder what happened with the interpretation of Connes NCG model as two sheets of spacetime whose separation is measured by the higgs field. How is it different of a ER bridge?
  41. M

    Electric Field of a Uniform Ring of Charge

    Hi! For this problem, The solution is, However, why did they not include constants of integration in their working shown in red? Many thanks!
  42. alan123hk

    B Decompose the E field into conservative and non-conservative parts

    Recently, I've seen several discussion threads here about splitting electric fields. I want to express my opinion. Of course, this is just a calculation method, not a basic physical concept, but it is also useful in some cases, at least not wrong. The following is an example of the out of a...
  43. livio

    Estimates of voltage drop with distance in weak electric field

    If I resolve the equation in 0, imposing a voltage value of 5 mV, it gives a non real solution, therefore I cannot resolve it for R=1 because I do not know which voltage value to impose. I am sure this is simpler than I am putting it :) thanks for any advice!
  44. C

    Why Does Positive Charge Exert Elec. Field Beyond Neg. Charge?

    I wonder how it is possible that a positive charge can exert el. field beyond negative charge? Shouldn't they "connect" and therefore positive charge should stop to have el. field beyond neg. charge? I mean, I am obviously wrong about that, but can someone please explain why/how el. field from...
  45. ermia

    Finding Constants: Potential and Field Analysis

    I have wrote all feilds and potentials and I want to find the constants. My first question is " when we say in the a<x<2a the potential is V(x)" then the potential in the a is V(a) or V(0) ( cause it is 0 in our new area) ? Second one is " when I want to write the gausses law for the point x=a I...
  46. M

    A The Effect of Time-Varying Electric Fields on a 2-Level Ion System

    Hello! If I have an ion which can be treated as a 2 level system, in a time varying electric field (the variation of the field doesn't need to be on or close to resonance, but for simplicity we can assume it is an oscillatory field) can I simply separate the problem into a center of mass motion...
  47. redirmigician

    I Acceleration in an electron field

    I read something about accelerators using nanotubes. I am a little concerned about the design mentioned in the "High Density with Perpendicular Carbon Nanotubes" part of this paper(https://doi.org/10.3390/photonics8060216). Can wakefield acceleration be done in an electron field? Or maybe I...
  48. A. Neumaier

    A Ensembles in quantum field theory

    Then please explain how the transition in conceptual language from a single quantum field (extending all over spacetime, or at least over the lab during a day) to an ensemble of particles can be justified from the QFT formalism.
  49. cwill53

    Average Electric Field over a Spherical Surface

    The picture above shows the integral that needs to be evaluated, and the associated picture ## \cos\alpha ## can be obtained via the law of cosines. I'm simply confused as to where the ##\cos\alpha ## comes from in the first place. I just don't see why ##\cos\alpha ## is necessary in this...
Back
Top