A known result is that the average field inside a sphere due to all the charges inside the sphere itself is proportional to the dipole momentum of the charge distribution (see, for example, here).
I wonder whether the same result can be applied in the case of a spherical shell of non-uniform...
So when evaluation the cross product of the velocity of the charge and the unit vectors associated with the point I am getting
v x r = j x [ i + j].
Well j x j is 0.
j x i = -k, but yet the answer is positive. Why is this?
Hi Pfs.
I think that QM can explain the classical things explained by classical physics. Using mean values and so on.
We know that in a constant magnetic field an electron will rotate on a circle (at the macroscopic scale approximation)
I have the answer for the Larmor precession but how to...
A question to physicists: What sort of real world scenario / image would *best* depict the increase in gravitational potential energy in a radial field?
Would a rocket traveling through the Earth's atmosphere suffice or are there better alternatives?
This image would have to be relevant to the...
Hi all,
I have a doubt when calculating the electric field of a uniformly polarized cylinder P along its longest axis. The cylinder has length L and radius a.
Using Gauss's law:
$$\int D\cdot ds = \rho_{f} =0 \, \, (eq .1)$$
The electric field inside of cylinder would be: $$E =-...
I used the above equation, and started with getting the cross product of dl and r, which was equal to 0.00195i+0.00365k. From there, I divided each component by the magnitude of radius cubed (0.827^3). I then multiplied by I and u naught(u_0=4pi*10^-7), and then divided by 4pi. The answer I got...
The net Electric field(inside the dielectric):
$$E_{net} = \frac{1}{4\pi \varepsilon_0 \varepsilon_r} \frac{q}{r^2}$$
$$\vec E_{net} = \vec E_{applied} - \vec p$$
where p is the polarization vector.
let charge ##q_{-}## be present on the inner surface of dielectric and ##q_{+}## on the outer...
Are there any QFT books that use little to no math? If there is a little math that is okay. I don't know much about math. I am looking for good explanations on how it works without math. Any help would be great!
Hello, any answers appreciated:
'Two spheres are 5 m apart. Sphere 1 has a charge of -20 mC and sphere two has a charge of -50 mC. (a) Find the strength of the electric field at the sphere's halfway point. (b) Find the electric potential at the halfway point
Okay so this is how it looks like,and there are the given values;
a) I've tried it like this. So I now this formula $$ E = \frac{J}{\sigma} $$ where sigma is the conductivity value. Now to get E we need this formula;
$$ U = \int_{l}{} E \ ds ] $$ Now to get U we can use the ## U = \frac{P}{I}...
Hello. I am having some trouble to understand the resolution of this question.
We could easily try to calculate the electric field relative resultant at the screen. The problem i am having is about the amplitude of the electric field:
Generally, we have that the intensity part dependent of the...
The correct answer is:
#P = \int \frac{dp^3}{(2\pi)^3}\frac{1}{2E_{\vec{p}} \big(a a^{\dagger} + a^{\dagger}a\big)#
But I get terms which are proportional to ##aa## and ##a^{\dagger}a^{\dagger}##
I hereunder display the procedure I followed:
First:
##\phi = \int...
Quote from cern: "Just after the big bang, the Higgs field was zero, but as the universe cooled and the temperature fell below a critical value, the field grew spontaneously so that any particle interacting with it acquired a mass."
Can it go back to zero? If anyone has a comment either way...
A lot of people say that Quantum Field theory (QFT) an Quantum Mechanics (QM) are equivalent. Yet, I've found others who dispute these claims. Among the counter-arguments (which I admittedly do not have the expertise to pick apart and check their validity in full) are the following:
1) While QFT...
-1st: Could someone give me some insight on what a ket-state refers to when dealing with a field? To my understand it tells us the probability amplitude of having each excitation at any spacetime point, but I don't know if this is accurate. Also, we solve the free field equation not for this...
hi guys
our instructor asked us to try to graph the projection of the electric field intensity at a certain point p(x,y) , for two charges q+-q located
at (-a,0) , (a,0), Now starting with the equation
$$\frac{dy}{dx} = \frac{E_{y}}{E_{x}}$$
after transforming this equation I got...
Hello,
I have used an edge current of 10 A through a 0,45 cm (lenght) wire inside an air sphere. The thing is that, according with Ampere law, the magnetic field (B) produced at a 1 mm of distance from the wire shall be 0,002 T, and I am obtaining much higher values in this simulation (around...
I'm preparing for exam but it seems I can't find problems similar to this on the internet.
Here I will apply Gauss's law on the electric field vector to get the charge density. but the problem is that I can't find similar examples on the internet that uses direct vectors on Maxwell's equations...
I want to develop a 2D random field and its change with time with constant velocity. My process:
1. Define a 2D grid [x, y] with n \times n points
2. Define 1D time axis [t] with n_t elements
3. Find the lagrangian distance between the points in space with the velocity in x and y ...
Hai guys,
My background is from tissue engineering more towards to biology. I am doing exposure of electromagnetic field to a human sample.
I have been assigned to use the magnetic device with the information as followed:
The PIC16F886 generates 150 microseconds (µs) of pulse frequency of 80...
Hello,
To first clarify what I want to know : I read the answer proposed from the solution manual and I understand it. What I want to understand is how they came up with the solution, and if there is a way to get better at this.
I have to show that, given a vector field ##F## such that ## F ...
I actually have worked through the solution just fine by taking the derivative of \vec{L}:
\frac{d \vec{L}}{dt} = \dot{\vec{v}} \times \vec{M} - \alpha \left(\frac{\vec{v}}{r} - \frac{\left(\vec{v} \cdot \vec{r}\right)\vec{r}}{r^{3}}\right)
I permuted the double cross product:
\dot{\vec{v}}...
So I started with b)
and it there was no q2 this would seem reasonable
I was wanted to ask , what effect does q2 have on potential of these two charges? Because it has to be given for a reason.
My approach is thus: the shell will have induced charges if it's conducting resulting in E at the centre of shell(though flux at centre will be 0). For non conducting spheres there can be no induction only polarization of dipoles, therefore the E field at centre will remain 0. Is my approach...
Let's say I want to describe a massive box in spacetime as described by the Einstein Field Equations. If one were to construct a metric in cartesian coordinates from the Minkowski metric, would it be reasonable to use a piecewise Stress-Energy Tensor to find our metric? (For example, having...
Hello!
I tried to solve a) see figure below, is it correct?
b) so what I think I can do is to solve ## M_{12} ## from the equation of the magnetic flux then I will get ## \frac{\Phi}{I} = M_{12}## Then I can even use the equation får the magnetic flux and the magnetic field $$ \Phi = \int \vec...
Hi !
It catches my attention that atomic particles such as protons, neutornes, electrons and their respective subparticles such as Quarks are theoretically formed by high-energy electromagnetic fields such as gamma rays and then the gravitational field that would generate the mass of these...
So the change in potential energy is ∆U = Uf-Ui. Final minus initial. If i solve the above problem like this I end up with a negative value. The way the person in the attached work solved the problem, is they used ∆U = Ui-Uf. How are the switching Ui and Uf? What is it I am missing?
I am having trouble understand where area circled in red.
I get that lamda is Q/L. The charge is +Q. Length is pi/R/2.
I am having trouble understanding why the length is pi/R/2? Is it because the circumference of a circle is 2*pi*R and since we have broken this problem down to just...
Hi , I've been trying to manage a solution in my head and i think I'm on the right path , i just need some approval and maybe some tips.
So it's obvious I can't solve this without integration because law's only apply to point charges , and i can't shrink this object to a point as i could do with...
A science team from the university of Kassel (Germany) proved with a physical model, that a moderate electric field inactivates the Convid-19 virus.
Source:
https://www.nature.com/articles/s41467-021-25478-7
via...
A general free field Lagrangian in curved spacetime (- + + +), is given by:
L = -1/2 ∇cΦ ∇cΦ - V(Φ)
when the derivative index is lowered, we obtain:
L = -1/2 gdc∇dΦ ∇cΦ - V(Φ)
then we can choose to replace V(Φ) with something like 1/2 b2 Φ2 so:
L = -1/2 gdc∇dΦ ∇cΦ - 1/2 b2 Φ2
** I will...
My understanding is that the uniform electric field ##\vec E## cannot be the net electric field since the dipole creates its own electric field as shown in first diagram below, which must superimpose with the uniform electric field. So, yes, the uniform electric field ##\vec E## around the...
In a previous thread* the field in a charged ring was discussed and it was shown to be not zero except at the center. In *post #45 a video is referenced that says the field diverges as one gets close to the ring and it was argued that at very close distances the field looks like an infinite line...
Can we apply the 1d equation (dE/dx = labmda/epsilon0)dEdx=λϵ0 to the first and the second figures?
But, in the 2nd case,
if we integrate the charge density, some field exists between the two charge densities. Intuitively, it should be like the last figure.
What's wrong with this?
About a week ago I was reading about Cartan's geometric interpretation of the Einstein Field Equation
Gij + Λgij = κTij
According to Cartan, this equation expresses the idea
(sum of moments of rotation for the faces of a little 3-cube) = 8π * (amount of energy-momentum within that 3-cube)
As...
Hello,
I am a high school student doing a project on pulsars and I would love to get into the deeper workings of a quantum electromagnetic field, but I am a bit lost. Since pulsars are neutron stars, who send out a beam of electromagnetic waves, I was quite curious about it's workings.
So...
Hi there,
if a dielectric (capacitor) is described with a constant permittivit eps (or C) and loss-tangent DF, how much energy ist lost when charging the capacitor by 1V?
For example: C=1, DF=0.1.
When charging from 0 to 1V, the lost energy (in J) is ...?
When charging from 1V to 2V, the lost...
The first part of the problem seems easy enough, the free electrons in the wire would move in a circle owing to an electric field that would be induced in the rod which would provide the centripetal force for the same (Please correct me if I am wrong). So we have $$eE=mω^2x$$, where e is the...
The total energy of the particle is ##u^2 / 2 - k/R##. When ##u^2 \gg 2k/R##, we take the total energy to be ##u^2/2## only. By the conservation of energy, we have:
$$
\frac{u^2}{2} = \frac{w^2}{2} - \frac{k}{p}
$$
Take the angular momentum expression ##l = bu##, we can replace ##u## with...
I am reading 't Hooft introduction to general relativity.
https://webspace.science.uu.nl/~hooft10 ... l_2010.pdf
In this text 't Hoof derives the Rindler transformation.
A little bit further he writes
My question is, how does he come to that formula $$\rho^{-2}g(\zeta)$$
If there is a spherical conductor like this with excess charges on its surface then this is the field it sets up. Each e- would have there own radial field of lines. And all the e-s would exert a force on each charge and the net field on each charge and thus net force would be zero. All the e-s...
Hello! What is the best way to focus on the most relevant, recently published papers in your field (in my case physics). Usually I just go on arXiv (hopefully most of them will be there), choose my field of interest and start scrolling. But that takes a lot of time. Searching for key words helps...
Hi all, first time on this forum.
I know this may sound like a stupid question, but how does the magnetic field distribute?
I am working on FEMM and i am analysing magnetic losses on steel ducts. I was checking the flux density and the magnetic field distributions and i was surprised when i...