Quantum Definition and 999 Threads

  1. G

    I Quantum field theory: an informative approach

    I'm looking for a book that describes the quantum field theory without going deeply in the theory with formulas or complex description of the mathematics under the theory. I know that this theory is really complex and it needs a deep knowledge of quantum physics in order to be understood. But...
  2. Garlic

    I Question about the quantum harmonic oscillator

    Dear PF community, I am back with a question :) The solutions for the quantum harmonic oscillator can be found by solving the Schrödinger's equation with: Hψ = -hbar/2m d²/dx² ψ + ½mω²x² ψ = Eψ Solving the differential equation with ψ=C exp(-αx²/2) gives: -hbar/2m (-α + α²x²)ψ + ½mω²x²ψ = Eψ...
  3. G

    I Delayed-choice quantum eraser experiment

    In the Kim's experiments (see picture below) part of the downwards photons are involved in a quantum eraser and part aren't. In D0 (upward path) we see interference if the entangled photons (downward path) are detected in D1 or D2 and we don't see interference if the entangled photons are...
  4. microsansfil

    A Bohmian mechanics for instrumentalists and quantum measurement

    Hi, I'm reading Demystifier's article about an interpretation of quantum mechanics. One concept that seems important for this interpretation is that of what is perceptible by us human beings compared to what is not (non-perceptible). Demystifier says: A perception by a naked eye is direct, a...
  5. E

    A Applying General Lorentz Boost to Multipartite Quantum State

    I would like to apply a General Lorentz Boost to some Multi-partite Quantum State. I have read several papers (like this) on the theory of boosting quantum states, but I have a hard time applying this theory to concrete examples. Let us take a ##|\Phi^+\rangle## Bell State as an example, and...
  6. B

    Where is a particle most likely to be? (Griffiths Quantum Mechanics)

    The wave function described seems impossible. Wave functions have to be differentiable at all points, right? Otherwise they don't represent a physically realizable state. The wave function in the example isn't differentiable at x=A, the maximum point. Also, for problem (c), I know it's visually...
  7. P

    A Can Work Be Defined for a Quantum System with a Time-Dependent Hamiltonian?

    I have a Hamiltonian ##H_{\lambda(t)}##, where ##\lambda (t)## characterizes a time dependent path in parameter space. The parameter is changed in finite time from ##\lambda (t_i)## to ##\lambda(t_f)## . At ##t = t_i## the system is in the intial state ##|\Psi>##. What is the work done on the...
  8. Ampulla

    B What causes quantum uncertainty?

    What causes quantum uncertainty? My friend who's working for Apknite says that detectors are not the cause of wave collapse, because you are measuring something that isn't remaining in the same state.
  9. M

    I Quantum Correlations without Many Worlds or Determinism

    I'm trying to understand the comment by bhobba below from another thread. A related followup from RUTA is provided for reference. After reviewing these I still don't understand. If I think in terms of a single-world (not Everette) and assume Alice and Bob are free to adjust their SG...
  10. H

    A Quantum Mechanics: Exploring Symmetry and Continuation

    Does quantum mechanics follow causality, phase transition, critical point, symmetry, asymmetry, order, disorder, continuation, discontinuation, limitation, without limitation, convergence, divergence, similarity, hierarchical structure, singularity, plurality?
  11. Baibhab Bose

    Infinitesimal Perturbation in a potential well

    If I calculate ## <\psi^0|\epsilon|\psi^0>## and ## <\psi^0|-\epsilon|\psi^0>## separately and then add, the correction seems to be 0 since ##\epsilon## is a constant perturbation term. SO how should I approach this? And how the Δ is relevant in this calculation?
  12. A

    Quantum numbers of a system of particles

    Hello everybody! I have a problem with this exercise when I have to find the possible angular momentum. Since ##\rho^0 \rho^0## are two identical bosons, their wave function must be symmetric under exchange. $$(exchange)\psi_{\rho\rho} = (exchange) \psi_{space} \psi_{isospin} \psi_{spin} =...
  13. cromata

    Quantum Quantum information recommendation

    I am 3rd year physics student (actually I have just finished it). I have good knowledge on basics of quantum mechanics: I had 1 semester of Introduction to Quantum Physics and then 2 semesters of Quantum Physics. Our literature were Griffiths (Introduction to Quantum Mechanics) and ''Gennaro...
  14. M

    A Gravitational dressing in quantum field theory

    In quantum field theory, a dressed particle is a particle ("bare particle") considered in combination with certain secondary effects that it produces (e.g. the virtual pair creation involved in vacuum polarization). The dressed states are regarded as more physical, hence closer to reality. Axel...
  15. H

    I How to be sure we have found all magnetic quantum numbers?

    The book uses ladder operators ##L_+## and ##L_-## to find the eigenvalues ##m## of ##L_z##. By first deducing that these operators raise or lower the eigenvalue by ##\hbar##, and then deducing that the lowest eigenvalue is the negative of the highest eigenvalue ##l##, it proves that ##m = -l...
  16. M

    I Why does quantum mechanics believe that gravity is a field?

    According to general relativity, gravity is simply the side-effect of bending the geometry of space-time. As a thought experiment imagine a 3D image being projected from a 2D hologram - the distance between the actual 2D pixels in the 2D plane always remains constant, yet depending on the shape...
  17. K

    B IB Physics Extended Essay - Quantum Levitation

    I've decided to focus my essay on quantum locking: including superconductors (YBCO), the Meissner Effect. I have access to the materials needed to experiment with this topic (materials from quantumlevitation.com). Could anyone help me formulate an appropriate research question for my Extended...
  18. D

    Courses Graduate Quantum as an Undergrad

    Hello, I'm considering taking the graduate level quantum mechanics course offered at my university (based on Sakurai/Shankar). I am currently reading Sakurai's QM, and mostly understand the topics (I'm currently reading the theory of angular momentum). There have been some steps where I still...
  19. Solomei

    B Quantum microphone and phonons

    https://phys.org/news/2019-07-physicists-particles-quantum-microphone.html Are phonons fundamental for advanced levitation technology?
  20. S

    Confusion regarding Quantum numbers

    Problem Statement: Given in the "Attempt at a solution section". Relevant Equations: Given in the "Attempt at a solution section". Problem Statement: Given in the "Attempt at a solution section". Relevant Equations: Given in the "Attempt at a solution section". I am having some serious...
  21. Sophrosyne

    B Speed of light with quantum path integrals

    Richard Feynman formulated quantum path integrals to show that a single photon can theoretically travel infinitely many different paths from one point to another. The shortest path, minimizing the Lagrangian, is the one most often traveled. But certainly other paths can be taken. Using single...
  22. L

    I Is the Quantum State Holographic?

    I'm reading Tim Maudlin latest book "Philosophy of Physics: Quantum Theory". In the following descriptions, it is not akin to holographic? "In the context of the quantum recipe, the mathematics of the wavefunction suggests that the quantum state (whatever it is) is a fundamentally global sort...
  23. J

    What is the difference between quantum computers and quantum accelerators?

    Hello. Could you please explain to me what the difference is between quantum computers and quantum accelerators?
  24. T

    I What makes the interpretations of Quantum Mechanics so important?

    How valid is the statement "It means physics is ultimately concerned with descriptions of the real world" in the realm of QM? Heretic question, what is "real" besides the outcome of the measurement?
  25. Michael Price

    A Resolving power of a radio telescope array: Quantum or classical?

    My question is: is the resolving power of an array of radio telescopes a quantum or a classical effect? The increase in resolving power of a single telescope, as aperture size increases, is easy to explain in terms of Heisenberg's uncertainty principle. But when we go an array of telescopes are...
  26. adosar

    I Momentum operator in quantum mechanics

    The momentum operator for one spation dimension is -iħd/dx (which isn't a vector operator) but for 3 spatial dimensions is -iħ∇ which is a vector operator. So is it a vector or a scalar operator ?
  27. M

    A Is time irrelevant in quantum mechanics?

    Could one come to think that time is irrelevant in quantum mechanics? we know that the QM equations are written with the time variable, (schrodinger equation). Yet everything suggests that time is irrelevant, as the search for loop quantum gravity seems to indicate
  28. B

    I How to use a quantum bit, or several

    Its all in the summary.
  29. Demystifier

    A Is quantum theory a microscopic theory?

    Quantum theory is widely thought to be a theory of the fundamental microscopic constituents of matter. It is supposed to tell us something about how matter behaves at the fundamental microscopic level, from which the classical macroscopic behavior should somehow emerge as an approximation based...
  30. M

    A Tensor and vector product for Quantum

    Hello, I am calculating the krauss operators to find the new density matrix after the interaction between environment and the qubit. My question is: Is there an operational order between matrix multiplication and tensor product? Because apparently author is first applying I on |0> and X on |0>...
  31. B

    B Can quantum entangled particles be split and sent into a black hole

    I am new here so apologies in advance. When a virtual particle and anti particle appear at the event horizon of a black hole, before they destroy each other, they are split with one being sucked into the black hole and the other becoming exhaust. Are these the same particles as the quantum...
  32. D

    Quantum Should I Get Both of Dirac's Quantum Mechanics Books?

    Hello, I remembered once hearing of a must-have quantum mechanics book by Paul Dirac. I don't remember if it was his Principles of QM or Lectures on QM. Based on the table of contents, I believe it was the Principles of QM book; however, looking at both I was thinking about getting his Lectures...
  33. T

    A What does the first ever photo of quantum entanglement look like?

    A photo: https://petapixel.com/assets/uploads/2019/07/quantum.jpg The popular press version (with above photo): https://petapixel.com/2019/07/13/this-is-the-first-ever-photo-of-quantum-entanglement/ The full paper in Science Magazine: https://advances.sciencemag.org/content/5/7/eaaw2563
  34. W

    I Quantum Causal Modelling: Mathematics

    I have been trying to read through the following paper: https://iopscience.iop.org/article/10.1088/1367-2630/18/6/063032/pdf, but am stuck at the parts from page 6 onwards. What is the "approach/formalism" used in the following sections of the paper, and are there any gentle introductions...
  35. W

    I Relativistic Quantum Mechanics & Localized Particles

    A lecturer today told the class that relativistic QM for single particles is flawed by showing us that for a state centered at the origin, it was possible that ##Pr(\vec{x}>ct)>0##. He said that this was down to the fact that we should be considering multi-particle states in relativistic...
  36. Haorong Wu

    Quantum Introductory textbook for cavity quantum electrodynamics

    Hi. I'm having a hard time learning the physical realization of quantum computers. I got stuck with the section of optical cavity quantum eletrodynamics. There are some concepts I am not familiar with. I think I should read some introductory textbooks which cover cavity quantum electrodynamics...
  37. P

    Other Submission to Classical and Quantum Gravity: Awaiting Decision After 1 Month

    I submitt a paper to journal Classical and Quantum Gravity. The status "awaiting referee reports" lasted one mont. However, now , the paper is on status "awaiting decision" two weaks up to now. Is a ill signal the delayed on the status "awaiting decision"?
  38. L

    I The Cellular Automaton Interpretation of Quantum Mechanics

    Why aren't you guys discussing this? http://de.arxiv.org/abs/1405.1548 The paper is 259 pages. And it will take me a year to read it. The Cellular Automaton Interpretation of Quantum Mechanics doesn't use any wave function. Just please tell me. How does it explain for example the double slit...
  39. Haorong Wu

    I Questions about an optical photon quantum computer

    Hi. I'm learning the optical photon quantum computer from Nielsen's QCQI. Since I'm not familiar with quantum optics, I got some questions about it.Q1. In page 288, the book reads: A laser outputs a state known as a coherent state ##\left | \alpha \right > = e^{- \left | \alpha \right | ^2 /2 }...
  40. M

    A Developments to unify quantum theory with General Relativity?

    Have there been any recent developments in the attempt to unify the standard model of quantum theory with General Relativity? It appears the no progress has been made recently in string theory or loop quantum gravity.
  41. patric44

    Quantum What is the most suitable Quantum Mechanics book for these questions?

    i want to know what is the most suitable quantum mechanics that will enables me after studying it to answer these specific questions ? i mean based on the hardness of these questions ( what book would you suggest to study these subjects ) . and by the way what is the level of these QM questions...
  42. A

    I Quantum Interpretations of this optical effect

    I generally stay away from discussion about the interpretations of QM, but just for this time I would like to know what's the point of view from Bohmian, many worlds, thermal and other interpretations of the following: https://arxiv.org/abs/1305.0168
  43. Demystifier

    I What is the current experimental evidence for quantum trajectory theory?

    [Moderator's note: Spin off from previous thread due to topic change.] Recent experimental confirmation of the quantum trajectory theory: https://www.quantamagazine.org/how-quantum-trajectory-theory-lets-physicists-understand-whats-going-on-during-wave-function-collapse-20190703...
  44. M

    I Quantum Gravimeter: Exploiting the Born rule

    Among the last of the classical tests of general relativity was the Pound–Rebka experiment performed in 1959. This experiment employed a variation of Mössbauer spectroscopy in which a moving emitter was used to counteract a gravitational redshift. The idea here is to exploit QED to measure the...
  45. F

    A Random Quantum Walk: Learn & Use w/ Quantum Gates

    I am an undergraduate doing research on QC/QI. My current topic to learn is continuous-time quantum walks, but first I must learn the random quantum walk. That being said, I was wondering if someone could simply explain what a random quantum walk is and then explain how they could be useful with...
  46. Haorong Wu

    I In quantum search algorithm, how to interpret the effect of U(t)?

    In Nielsen's QCQI, in page 259, it reads, $$U \left ( \Delta t \right ) = \left ( \cos^2 \left ( \frac {\Delta t} 2 \right ) - \sin ^2 \left ( \frac {\Delta t} 2 \right ) \vec \psi \cdot \hat z \right ) I \\ -2 i \sin \left ( \frac {\Delta t} 2 \right ) \left ( \cos \left ( \frac {\Delta t} 2...
  47. P

    I Quantum Computing - projection operators

    Assume ##P_1## and ##P_2## are two projection operators. I want to show that if their commutator ##[P_1,P_2]=0##, then their product ##P_1P_2## is also a projection operator. My first idea was: $$P_1=|u_1\rangle\langle u_1|, P_2=|u_2\rangle\langle u_2|$$ $$P_1P_2= |u_1\rangle\langle...
  48. J

    B Quantum Entanglement Violates the Laws of Physics

    The problem with this is that only one push's worth of energy was expended. One push's worth of input cannot produce two push's worth of output, for this would violate the law that says you can't get more movement out of something than the amount of force you exert onto it (to put is very...
  49. bhanum

    B The Cat's Perspective: Can Macroscopic Bodies Be in Superposition?

    Hi, In the Schrodinger's Cat thought experiment, we say that the cat is in a superposition of states of being either dead or alive. But isn't that opinion biased from being outside of the system? From the cat's point of view, it is either dead or alive but never both. The same argument can be...
Back
Top