Spring Definition and 999 Threads

SPRING is a freeware GIS and remote sensing image processing system with an object-oriented data model which provides for the integration of raster and vector data representations in a single environment. It has Windows and Linux versions and provides a comprehensive set of functions, including tools for Satellite Image Processing, Digital Terrain Modeling, Spatial Analysis, Geostatistics, Spatial Statistics, Spatial Databases and Map Management.
SPRING is a product of Brazilian National Institute for Space Research (INPE), who is developing SPRING since 1992, and has required over 200 man-years of development and
includes extensive documentation, tutorials and examples. More than 70,000 users from 60 countries have downloaded the software, as of January 2007.

View More On Wikipedia.org
  1. S

    Vertical spring & maximum length

    Included a diagram as well... forgive me... I cannot seem to 'uninvert' the attached picture final velocity is zero if we set the lowest point that the mass reaches as zero, then the final height is zero let H be the 'extra' length that the spring reaches over and above the initial stretch...
  2. neel400

    Question about springs and rotational/translational energy

    A thin uniform rod has mass M=0.510 kg and length L=0.470 m. It has a pivot at one end and is at rest on a compressed spring as shown in (A). The sequence below shows that the rod is released from an angle θ1=59 degrees, and moves through its horizontal position at (B) and up to (C) where it...
  3. NickTheFill

    Modelling the tyre as a spring in a quarter car model (Part 2)

    Hi all, I'd like to resurrect an old thread in which the original question is still yet unresolved in my mind. Simply put, in a simple quarter car model, the tyre can never leave the ground as it is modelled as a spring attached to the ground surface. In reality however, subject to input, the...
  4. MattGeo

    Distribution of Energy when work is done on a system of 2 masses connected by a spring

    [Mentors’ note: No template because this post was moved from the technical forums. Everything that the template asks for seems to be present in the body of the post] Suppose there is a spring-mass system arranged as shown in my crude drawing. This occurs on a frictionless surface. The spring...
  5. S

    Energy of springs connected in series and parallel

    For P, the force will be 2F and the spring constant will be ##\frac{k}{2}## so the extension will be 4 times, and the energy will be 8E but there are no options showing 8E What is my mistake? Thanks
  6. Heisenberg7

    B Why Does Hooke's Law Use a Negative Sign in Scalar Form?

    Assume that we have a block connected to a spring. Also, assume that there is no friction, the spring is massless and ideal. If we were to pull on the block with some force ##\vec{F_{pull}}##, we are going to get the spring force ##\vec{F_{s}}## in the opposite direction. Assume that we are...
  7. tellmesomething

    Force analysis of a spring-bob system

    I dont need anyone to do the sum directly please. I just need some hints, please dont give me the solution. Im unable to understand how the bob will hit a maximum elongation, there are two forces accelerating the bob: Gravitational force and electrostatic force. There is one force...
  8. T

    Stretched spring attached to the center of a pure rolling disk

    I need to determine: 1) The initial acceleration of the disk 2) the speed of the disk when the spring reaches minimum displacement For point one I think I should use the free body diagram and then ##\Sigma F = ma##, I'm taking as positive the right and the upward directions and the counter...
  9. bobfrancis1980

    Reliable CO2 Cartridge Puncturing for Horizontal Acceleration Test

    There are some magnet drop experiments in the literature and I want to try an alternative experiment to determine if the magnetic fields affect inertial mass. I am designing a submarine shaped enclosure where I will have either two 2"OD 1/4"ID 1"thick N42 magnets with their opposite poles...
  10. M

    Is My Solution to the Driven Spring Problem Correct?

    For this problem, For part(a), I am not sure if I am solving it correctly. I define the usual cartesian x-y coordinate system at the base of the wall. This gives ##x = l_0 + q(t) + x_w(t) = l_0 + q(t) + d\sin(\gamma t)## which implies that ##\dot x = \dot q + d \gamma \cos (\gamma t)##...
  11. annnnnw

    What is the maximum length of the spring?

    I know gravity needs to be taken into account and that I can find the stiffness but generally I'm pretty lost
  12. askingask

    How to input and output work in a system at the same time?

    Basically, I thought of a weight as a energy storage. But realised you have to output that energy from the same part that inputs the energy. Now I have done some research and found two ways of storing and discharging mechanical work at the same time. First is the Huygens mechanism(maintaining...
  13. Lotto

    B How will a spring stretch in the following cases?

    1) I have a spring on the ground with no friction and the spring is not attached from one end. If I apply a force ##F## and the spring is massless, will it stretch? I think that it won't. But if it has a mass ##m##, will it stretch now? Will it be ##x=\frac{F}{k}##? I don't know, but I imagine...
  14. hamishmidd

    Finding a formula for displacement of a mass on a spring using v.

    I have tried to answer this using the relevant equations I am provided on my formula sheet, however I get stuck pretty close to the end. I start with 1/2mv^2=1/2kx^2 at the equilibrium position, and kx=mg, x=mg/k. This gets me to v^2=mg^2/k, but I don't know where to go from there. The potential...
  15. Bling Fizikst

    Extension of spring in a system with two pistons

    Let's say the upper piston goes down by ##y_1## and the lower piston goes down by ##y_2## after the block is suspended \ By volume conservation ##s_1 y_1=s_2 y_2## Let the pressure at the location of the upper piston be ##P_c=\frac{ky_1}{s_1}## Pressure at the lower piston : ##P_a=P_c+\rho...
  16. bremenfallturm

    Absolute motion analysis of pulley-spring system

    Hello! I have this problem from an old exam I'm trying to solve. The problem is in Swedish so I've translated it: NOTE that I accidentaly wrote $$C\neq 1$$ in the picture below. The correct problem statement is above. But that part is not what I have problems with. The answer key says "if the...
  17. S

    Sprag clutch with disengagement

    All types of sprag overrunning clutches have some sort of spring to keep the rollers or sprags in contact with the running surfaces so they can engage and wedge to lock the two surfaces together when turning in the locking direction. But is there any kind of sprag clutch where you can...
  18. T

    Spring Constant Force Problem Help

    I'm leaning towards the same, or maybe increase. I actually have no clue.
  19. sysprog1

    Happy Spring

    At the park
  20. K

    Advantages of a cone-shaped spring?

    I'm doing a personal experiment where I take a conical spring (that is, a spring with two different diameters on either end), hang it from the ceiling, and measure the period of oscillation for different masses hanging below the spring. I do this for two different orientations of the spring; one...
  21. cestlavie

    Why Isn't the Spring Force Sum of Both Ends?

    $$F=kx$$ $$k=\frac F x= \frac {50+50~N} {5+5~ cm}= \frac {100~N} {10~cm}= 10~N/{cm}$$ However, the answer is ##5~N/cm##, because the force on the spring is ##50~N##. I am having trouble understanding why the force isn't ##50~N## + ##50~N##. The diagram looks as though the spring is experiencing...
  22. hello478

    How Does Spring Compression Relate to Energy Changes?

    part d- ii and iii ii) my answer is 300-140/300 *100 ke at y = 300 and spring energy at max compression is 140 iii) e is directly proportional to x^2 so it increases exponentially is my explanation correct?
  23. P

    I Lagrangian density of a linearly elastic string under gravity

    This was inspired by this:Dropping an extended Slinky -- Why does the bottom of the Slinky not fall?. There is that famous demonstration of dropping a slinky, and the bottom of the slinky does not move until the center of mass reaches the bottom. I was trying to figure out how hard are the...
  24. hello478

    Help needed in this problem involving a spring and energy balances

    i do know how to do the working but i dont understand the concept stated above...
  25. JackLee

    Find the force acting on the roller in the direction of the spring

    A torque meter with a triangular slab extension is inserted into a corresponding triangular slot. The C-shaped arm features a V-shaped dent on which a roller is seated. This roller is held in compression by a spring. The roller's positions are labeled '0' for the initial state and '1' for the...
  26. I_Try_Math

    Vertical Mass Spring System | Analyzing work

    Is there a typo in this question? Supposing there was no friction, the block would fall until the force of the spring was equal to ##mg = 2 * 9.8 = 19.6##, taking the upward y direction as positive. Since ##F_{spring} = -200y## and ##19.6 = -200(-0.098)##, the block would fall 9.8 cm. It's not...
  27. D

    I Why Substitute Force Magnitude in Spring Work Calculation?

    i'm copying from the book... Hookes Law - F = -kx W = Fdcos∅ since ∅ is 180°, W = -Fd = -Fx W = ∫(-Fxdx) now the book says, from Hookes Law equation "the force magnitude F is kx. Thus, substitution leads to W = ∫(-kxdx)" why are they saying to substitute the magnitude of the force and not the...
  28. M

    Mass on a spring from equilibrium

    Can someone explain that, when using the formula (Fs=1/2 kx^2) why do we use x=0.1m instead of 0.05m? Seems like a simple concept but why isn't it 0.05m (since 0.05m from equilibrium). Thanks.
  29. Argonaut

    Spring Problem Involving Variables and Constants Only

    Here is my attempt at the solution: a) The apparatus may only experience acceleration ##a > g## while in contact with the spring. Since the spring exerts the greatest force when it is the most compressed, the apparatus will undergo the greatest acceleration at that point. So Newton's second...
  30. MatinSAR

    Spring with mass hangs from the ceiling

    I know that we can answer it using conservation of energy or using N's 2nd law. Using N's 2nd Law: ##F = mv \frac {dv}{dx}## ##Fdx = mvdv## For spring we have : ##F=-kx## ##(mg-kx)dx=mvdv## We'll get same result using above equation. My question: Average spring force from 0 to x is ##-\frac...
  31. JMAMA

    Hooke's Law using Potential Energy

    Max speed occurs when all energy has been translated from spring into box. E (Potential) = 1/2kx^2 E (Potential) = (1/2)(42 N/m)(0.280 m)^2 = 1.6464 N m Ep = Ek =1/2mv^2 1.6464 N m= 1/2 (1.2 kg) v^2 v = 1.6565 m/s
  32. DarkEnergy890

    What is a spring constant of 20 N/m used for?

    In my physics lab we determined the spring constant of a steel spring. This turned out to be 20 N/m. However, when I search online, I can't see any uses of springs - I know springs can be used everywhere, but nobody seems to specify their spring constant. Anyone know of any applications?
  33. S

    Modelling a spring system with damping force and external forces

    I think its critically damped by looking at the graph of the solution.
  34. E

    Calculating the Energy Absorbed by a Spring in a Car Suspension System

    I approach this by considering the four springs in parallel each with spring constant ##k## as one spring with four times the spring constant ##k' = 4k##. The car is dropped and at the moment its tyres touch the ground I assume that the spring is in its resting position. As the car continues to...
  35. M

    Free vibration in 2DOF spring mass systems

    I am completely new to this subject and I am trying to find out how I read data off a displacement vs time graph to find the natural frequencies and mode shapes. Lecturer hasn't provided any materials on graphs, just looking for some help and where to go so I can understand it. Thank you
  36. RobbyQ

    I Mass, Energy and a compressed spring

    If I take a spring with clamps and I weight that system accurately. Then I compress the spring and clamp it thus giving it potential energy. If I now weigh the clamped spring I should see an increase in mass because of the added energy. Is this the case and something that could be proved in the...
  37. A

    I Is Hooke's law really not working, or is it me being dummy?

    Hello everyone, I'm a new member, and you might see me around from now on. I'm now on a path to understanding the mathematics behind a complicated mechanical machine. My knowledge is basically what I learned during my school days and also during university courses, and for me, it was mostly...
  38. J

    B Force transition through spring

    We put object on weight ang get a mass. What would that mass be if we put a spring between object and weigt, so that the spring woul shrink to half its original size?
  39. Slimy0233

    I Force on Body Attached to Spring at Displacement x - A.P. French

    Source: A.P. French's Vibrations and Waves I do not recognize the first equation, can someone explain how it came to be? The reasoning behind it. How can force on a body attached to a spring at small displacement x be represented as ? I know recognize F = - kx (restoring force) I realize...
  40. E

    Work done pushing a spring from the side

    My question is whether I've formed the integral for the work done correctly? It just seems a bit unwieldy to me... If I call the extension of the spring ## x ##, I can see that ## z = \frac l 2 + x ## and ## z^2 = \left( \frac {l} {2} \right)^2 + y^2 ##. Combining them gives: $$ x = \sqrt {y^2...
  41. Xiothus

    Solve First Year Harmonic Motion Problem: Cylinder Rolling

    Thank you guys for taking the time to read this - I'm decently struggling with first year and need some tips on how to properly conceptualize problems and learn what the right approach is on certain problems. Have a wonderful day, again thank you for checking this post out!
  42. S

    Engineering The value of "k" for spring constant, is the book answer incorrect?

    There is some discussion currently and I was hoping to get some opinions here. The question is in regard to a Hook's law problem. The text gives the problem as seen below. The text says the answer is 50lb/in. Several people have tried from several different approaches. Factoring the "y" equation...
  43. sHatDowN

    Vector sample problem -- Force components on a spring mechanism

    Determine the amount and type (tensile or compressive) of the spring force so that the resulting force is a vertical force. Also get the resultant force. i find 60N (compressive) and resultant forces is 10800 is that correct?
  44. L

    Find speed of block using energy and spring equations? Help please

    So here's what I did but it isn't right: W = (Kf + Uf) - (Ki + Ui) (2.6)(9.81)(0.45)(-0.01)=(1/2mvf^2 + 1/2kxf^2) - (1/2mvi^2 + 1/2kxi^2) -0.1 = (1/2(2.6)(vf^2) + 1/2(855)(0.02^2)) - (1/2(855)(0.03^2)) 1.3Vf^2 = 0.114 Vf^2 = 0.09 Vf = 0.3 m/s
  45. B0B

    B Finding the spring constant of a rope

    The 7/8" Kinetic Recovery Rope like this yankum rope is the most common size used for Jeeps, Broncos, and other SUVs. I apologize for English units but that's how ropes are sold and marketed. I've talked to the biggest rope suppliers and they have no idea how to compute the rope's spring...
  46. paulimerci

    Two carts are forced apart by a compressed spring

    It's an explosion problem. When two carts are pulled apart, the bigger one takes longer than the smaller one. So the velocity of the bigger one is small, and the velocity of the smaller one is large, and they are opposite each other. So the momentum before the explosion must be equal to the...
  47. P

    Tension in a spring that's bent into a semicircle

    Is this even solvable? I don't know where to begin.
  48. M

    Differentiating the equation for the mechanical energy of a spring

    Why when we differentiate ## E = \frac {1}{2}mv^2 + \frac {1}{2}kx^2 ## with respect to time the answer is ## \frac {dE}{dt} = mva + kxv ##? I though it would be ##\frac {dE}{dt} = ma + kv ##. Many thanks!
Back
Top