Hello, I learned recently about alveolar surface tension, and the explanation provided in the course was not satisfactory, it said that it is due to the force that pushes water molecules of the outer layer to the inner layers, I don't understand why this force that pushes water toward the cell...
I got 13N but is that right because apparently, it's wrong
Here's my work:
F = mg = 2(10) = 20N
F = ma
a = F/m = 20/4+2 = 20/6 = 10/3 = 3.3m/s^2
T = mg - ma T = (2kg)(10m/s^2) - (2kg)(3.3m/s^2) = 13.4 N
I appreciate it! And if I'm wrong could you show how you got your answer? Thanks
Hello! I'm trying to understand how this pendulum works. I found this video that explains how to calculate the T force from the rope.
He uses the preservation of kinetic and potential energy in order to find the magnitude of the velocity and then using Newton's second law, he calculates the T...
For the box I understand it’s just normal and force of gravity as well as tension pulling them, it was declared to have no friction so it just points up down and right. It’ll be accelerating right.
The second person again has the normal force, gravity and the tension going to the left as a...
I'm attempting to repair my Ergotron Workfit station. After taking apart, I discovered the problem. A single nylon rope split, releasing the spring's tension. Because it is past the warranty, the manufacturer is recommending I toss the whole assembly and buy a new $650 one. Doesn't seem the...
So, this problem is going to require some explaining..
I'm a Production Engineer who's recently started working at an adhesive tape converter/distributor and I've been working on an industrial rewinding machine for films, tapes, foams etc. The tapes I rewind range from 0.2mm - 3mm thickness...
Please tell me if I need to post my solution for this.., but I just have a question more or less 'conceptual' question about (c).
so I know that from Newton's 2nd law for centripetal acceleration --> ##F_{rope} - mgcos(\theta) = ma_n## where ##a_n = \frac {v^2}{R}## such that where the normal...
I have actually already partly solved a), as I do get the concept behind how to find tension through making sure that the net force in the x and y direction are zero.
Here are my answers for a)
T1 = T5 = 2mg/sin(theta)
T2 = T4 = mg/sin(phi)
T3 = mg*cot(phi)
The reason I am asking this...
I had used the same constraint as the solution manual says.
So my two Lagrangian would be
##L_1=\frac{1}{2}m_A\dot{x_A}^2+\frac{1}{2}m_B\dot{x_B}^2+\frac{1}{2}m_C\dot{x_C}^2+m_Cgx_C+T(x_A+x_B+2x_C-c)##
whereas c is just a constant.
Of course, I have to write my Lagrangian using constraints...
In equilibrium position, the pulley that holds mass C (we will call this pulley C later on) is pulled upwards by spring S . Hence, the string around the pulley C becomes tense. Now, if spring S is cut, my intuition says that the tension around this pulley will become zero, and mass C will...
Lagrangian principle is easier to solve any kind of problem. But we always "forget" (not really. But we don't take it into account directly.) of Tension in a system when looking at Lagrangian. But some questions say to find Tension. Since we can get the equation of motion from Newton's 2nd law...
If I shoot a block with mass m1 with initial velocity v, and the block m1 goes to the end of the string tethered to the bottom block with m2 without lifting it up, what is the force equation involved with the block with m1?
I am torn between whether it would be
1) -T -m1*g = 0, which I am...
I'm not too sure how to account for both the mass and the rope at once.
I think the following are true for the two individually:
For the mass at the end, ## T = m ω^2 L ##, following from ##a = v^2/r##and ##v=ωr##.
For the rope, ##dT = ω^2 r dM##, where ##dM = λ dr## and λ is the mass per unit...
Ok. So, I already worked on this problem, and get ##m_c## = 2m/3, which is correct according to the book.
However, I also want to know the value of the tension (T) between rod A and B.
Note: Before we start working on my modified question, I want to point out that the force exerted by the...
My textbook is deriving wave speed on a string under tension with confusing thetas. It assumes ##\tan \theta_1 = \frac{-F_1}{F_T}## and ##\tan \theta_2 = \frac{F_2}{F_T}## which confuses me. I know for sure theta is the angle due to the position of y and x, ##\tan \theta = \frac{y}{x}##, but I...
I am trying to find out what the smallest hole water will flow through. not a molecule of water, just water in general. Here is an example. I have a single walled cube that i 3d printed. When i put water in it, it leaks between the layer lines. I want to find out what the spacing between the...
Hello
If a compound bow has longer limbs will it have more power? Longer limbs means more limbs, hence more tension is building when limbs bend. That tension transfers to the bow string. Is this a true statement. I know there are other factors for making a powerful compound bow. Is long limbs...
For practice I did the following problem:
Solving this problem mechanically was simple enough using the following force diagrams:
Then
$$F_{net_M} = T - Mg = 0$$
Due to the stationary condition
$$T = mg$$
and
$$F_{net_m} = T = ma_c$$
$$T = ma_c$$
Because centripedal acceleration is...
I have gathered everything from post “Monkey climbing up the rope” about tension.
Tension is basically a force that the rope applies back when it is under stress. It is an inward force. Tension T's direction at end points of rope where its attached to the body and ceiling is inwards. Tension is...
Summary:: Surface tension experiment
Does anyone have an idea about a SURFACE TENSION experiment to present as university class work?
An experiment that is not too "simple" and repetitive (like things floating under water), and that is well designed.
The diagram represents one half of the system.
##W## is the weight of the man.
##T_1 cos \theta = T_2## --> The horizontal component of ##T_1 = T_2## right ?
##T_1 cos \theta = T_1 \frac {d}{\sqrt {4h^2 + d^2}} = T_2##
##T_1 sin \theta = \frac {W}{2}##...
Hello there! I am using a Surge Protection Device (SPD) for Solar Power System. My home uses a 3-phase system (380V and 220V at each phase). What should be the tension between the phase and ground at the SPD? And between the ground and neutral? Should be any tension at all? God bless all. PS. My...
This problem just came to my mind when thinking on another problem. Does the tension is just 2T as it is if the angle "a" is 90 degrees? It seems not to me. In a "normal"( I don't really know what is the right word for that) situation, the tension is would be 2T at the line in the middle of two...
One recent example of a thread discussing flat or not is:
https://www.physicsforums.com/threads/could-the-universe-be-infinite.1011228/ .
I found an interesting 2021 article regarding the Hubble constant tension...
I saw the following problem in a test I was reviewing:
I don't understand how they got their answer. I used the formula: ƒ=sqrt(T / u) / 2L where f is the frequency of the string, T is the tension, u is the linear mass density, and L is the length of the string.
I got:
T = mg = 50 * 9.8 = 490N...
This wiki page offers an incomplete equation for calculating tension over a length of string. Can you please help complete the equation?
https://en.wikipedia.org/wiki/String_bending
It is referenced here in this thread post #23...
I have following setup where a non-elastic belt is wrapped around an elastic object, like leather belt around waist. When I pull the belt with force F, it tightens around the elastic object and the belt exerts force to the elastic object. I would like to know what is the relationship between the...
What I did first is to find the tension T1 and T2;
T1=(mg)/[sin(55)]
T1=(40N)/[sin(55)]
T1=48.83N
T2=T1cos(55)
T2=(48.83N)[cos(55)]
T2=28.01N
Now I do not know how to proceed. Can someone help me?
Hi, I have a question about hoop stress or tangential force acting within a spinning object such as a solid flywheel. As described in a textbook I’ve seen, the hoop stress tension force acting as if across the diameter of the object, trying to pull it apart, is a resultant of forces acting...
the only formula related to tension that is provided is T=ma I have found an equation on the internet that I believe would work but we have never been introduced to this equation so I'm unsure if I'm able to use it. i entered the given values and got an answer of 419.47 which is one of the...
By analyzing 91,742 reported extra-galactic distances and their one sigma uncertainties for 14,560 galaxies, it was found that pairs of reported extra-galactic distances of the same galaxy differ from each other by 2.07 the reported uncertainties on average.
In my opinion, this indicates that...
When small object such as needle is put on the surface of water it displaces small amount of water which creates a depression under the object. Such depression increases surface area of the water because of which surface tension tends to decrease it.
Explanation why surface tension balances the...
This method calculates surface tension based on force balance acting on the ring placed on the liquid surface: $$ F = G + \gamma L $$
where ##G## is weight of the ring, ##L## is wetted length of the ring which is equal to its circumference, ##F## is outer force of tensiometer acting on the ring...
Hi!
I really can't figure this one out...
I have a = (F-cos(36.1)g) = a and from that I get T = mB1 a = 6.3 (20.3736) = 128 N.
Could someone please help?
Thanks!
Summary:: An inventive child named Nick wants to reach an apple in a tree without climbing the tree. Sitting in a chair connected to a rope that passes over a frictionless pulley (see figure below), Nick pulls on the loose end of the rope with such a force that the spring scale reads 350 N...
If the wire is bent by three pivots, I want to find an expression that represents its shape.
There will be tension of wire and other physical factors.
How can it be expressed?
Hi,
I'm currently looking into the forces exerted on a cable if the cable was to go from slack to taut due to a falling object that is pivoted about a lower hinge - such as a drawbridge but instead of slowly lowering, there is slack in the cable causing the bridge to freely rotate about the...
The energy stored in a current loop equals ##\frac{LI^2}{2}##. From a dimensional argument, it follows that the inductance grows with the size of the loop. This would mean that, if we assume the current stays constant, enlarging the loop would require external positive work, so, the force...
Hi, I need to prove that the tension for artificial satellite consists of two points of mass m/2 connected by a light rigid rod of length , the tension in the rod is -
$$ T=\frac{3}{4}\frac{Gmm'l}{a^3}-\frac{1}{4}\frac{Gm^2}{l^2} $$
the satellite is placed in a circular orbit of radius a>>l...
Is it possible for the stone to move in horizontal circular motion just like in the picture? I try to draw the free body diagram of the stone and there are two forces acting on the stone, its weight (directed downwards) and the tension of the string (directed to the left).
The tension will...
I am just confused on how to find the normal force/ FN of the first object. My classmates are saying Fgy is the exact same as Fn but I don’t get why
Fgy= Fg sin theta
Fgy= (20)(9.81) (sin35)
Fgy= 112.5
Fgy = FN
I have attached two different attempts to solve this problem. They both look correct to me but they give two different answers! Which one is correct, which one is wrong and why?
consider a small element that subtends an angle ##2\Delta \theta## at the center of the ring. balancing the forces on this element gives:
(let the field due to the ring be at its circumference be ##E##).
$$2T\Delta \theta = E(dq) = E (\frac{Q}{2\pi})(2\Delta \theta)$$
$$T = \frac{EQ}{2\pi}$$
now...