- #36
benorin
Homework Helper
- 1,441
- 191
Ignore this post, it contains an arithmetic error, for the correct solution, read post #40.
$$\begin{gathered} \iint_{S_1}\vec{F}\cdot d\vec{S} = \iint_{\text{Projection of } S_1\text{ in the }xy\text{-plane}}\left(-Pg_x-Qg_y+R\right)\, dA \\ = \iint_{x^2+y^2\leq 2^2}\left[\tfrac{2x^2y^2}{\sqrt{x^2+y^2}}+(x^2+y^2)\left(-1+\sqrt{x^2+y^2}\right)\right] \, dA\\= \int_{0}^{2\pi}\int_0^2\left(\tfrac{r^4\sin ^2\theta\cos ^2\theta}{r}+r^2(r-1)\right) r\, dr d\theta\\ =\int_{0}^{2\pi}\sin ^2\theta\cos ^2\theta\, d\theta\int_0^2r^4\, dr+\int_{0}^{2\pi}d\theta \int_0^2 (r^4-r^3)\, dr=\boxed{\tfrac{32\pi}{5}}\\ \end{gathered} $$
Let ##S_2## denote the circular disk ##z=h(x,y)=0,\quad (0\leq x^2+y^2\leq 2^2 )## with downward pointing normal. Then
$$\begin{gathered} \iint_{S_2}\vec{F}\cdot d\vec{S}=-\iint_{x^2+y^2\leq 2^2}(x^2+y^2)\, dA\\ = -\int_0^{2\pi}\, d\theta \int_0^2 r^3\, dr=\boxed{-8\pi}\\ \end{gathered}$$
Hence, adding the fluxes, we get ##\boxed{ \iint_{S}\vec{F}\cdot d\vec{S}=-\tfrac{8\pi}{5}}##.
I assume the cone has a base because it's oriented. Let ##S_1## denote the upper cone-shaped surface given by ##z=g(x,y):=2-\sqrt{x^2+y^2},\quad ( 0\leq x^2+y^2\leq 2^2)##. Also denote the ##x,y,## and ##z## components of ##\vec{F}## by ##P,Q,## and ##R##, respectively. Thenfresh_42 said:4. Let ##S:=\{\,(x,y,z)\in \mathbb{R}^3\,|\,x^2+y^2=(2-z)^2,\,0\leq z\leq 2\,\}## be the surface of a cone ##C## with a circular cross section and a peak at ##(0,0,2)##. The orientation of ##S## be such, that the normal vectors point outwards. Calculate the flux through ##S## of the vector field (FR)
$$
F\, : \,\mathbb{R}^3 \longrightarrow \mathbb{R}^3\, , \,F(x,y,z)=\begin{pmatrix}xy^2\\x^2y\\(x^2+y^2)(1-z)\end{pmatrix}.$$
$$\begin{gathered} \iint_{S_1}\vec{F}\cdot d\vec{S} = \iint_{\text{Projection of } S_1\text{ in the }xy\text{-plane}}\left(-Pg_x-Qg_y+R\right)\, dA \\ = \iint_{x^2+y^2\leq 2^2}\left[\tfrac{2x^2y^2}{\sqrt{x^2+y^2}}+(x^2+y^2)\left(-1+\sqrt{x^2+y^2}\right)\right] \, dA\\= \int_{0}^{2\pi}\int_0^2\left(\tfrac{r^4\sin ^2\theta\cos ^2\theta}{r}+r^2(r-1)\right) r\, dr d\theta\\ =\int_{0}^{2\pi}\sin ^2\theta\cos ^2\theta\, d\theta\int_0^2r^4\, dr+\int_{0}^{2\pi}d\theta \int_0^2 (r^4-r^3)\, dr=\boxed{\tfrac{32\pi}{5}}\\ \end{gathered} $$
Let ##S_2## denote the circular disk ##z=h(x,y)=0,\quad (0\leq x^2+y^2\leq 2^2 )## with downward pointing normal. Then
$$\begin{gathered} \iint_{S_2}\vec{F}\cdot d\vec{S}=-\iint_{x^2+y^2\leq 2^2}(x^2+y^2)\, dA\\ = -\int_0^{2\pi}\, d\theta \int_0^2 r^3\, dr=\boxed{-8\pi}\\ \end{gathered}$$
Hence, adding the fluxes, we get ##\boxed{ \iint_{S}\vec{F}\cdot d\vec{S}=-\tfrac{8\pi}{5}}##.
Last edited: